420. Thermodynamics of Ion Association. Part VII. ${ }^{1}$ Some Transition-metal Oxalates.

By A. McAuley and G. H. Nancollas.

Thermodynamic equilibrium constants for the association, in aqueous solution, of nickel, cobalt, and manganese ions with the oxalate ion have been determined by a precise e.m.f. method between 0° and $45^{\circ} . \Delta G, \Delta H$, and ΔS for the reaction $\mathrm{M}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightleftharpoons \mathrm{MC}_{2} \mathrm{O}_{4}$ have been calculated and ΔC_{p} has been estimated from the variation of ΔH with temperature. The thermodynamic quantities are discussed.

Previous parts of this series have been concerned mainly with ion pairs of only moderate stability. The present work extends the available thermodynamic data to the much more stable oxalate complexes of bivalent transition-metal ions which are known to follow the Irving-Williams order of stability. The identification of complex species present in such solutions is made difficult by the low solubility of the salts. In the presence of an excess of oxalate the solubility increases owing to the formation of increasing amounts of $\mathrm{M}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}{ }^{2-}$, but we are interested in complexes in which a single anion is associated with each metal ion. Studies of copper oxalate have shown that, with careful control of experimental conditions, supersaturated solutions may be prepared which are stable for long periods. ${ }^{2}$ This technique has been extended to cobalt, nickel, and manganese oxalate in the present work, and measurements have been made by using the cell

$$
\mathrm{H}_{2}-\mathrm{Pt}\left|\mathrm{MCl}_{2}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}, \mathrm{NaOH}\right| \mathrm{AgCl}-\mathrm{Ag}
$$

Only in the case of cobalt was it necessary seriously to limit the concentrations to prevent precipitation.

[^0]
Experimental

Concentrations of stock solutions prepared from " AnalaR" metal chlorides were determined by gravimetric analysis of the chloride as silver chloride; duplicate determinations agreed to within 0.02%. "AnalaR" oxalic acid was recrystallised three times from conductivity water (analysis, $\mathbf{9 9 . 9} \%$ pure). Hydrochloric acid was constant-boiling material. Carbonate-free sodium hydroxide, prepared from a saturated solution suitably diluted with carbon dioxide-free conductivity water, was standardised both by volume- and by weighttitration against weighed samples of potassium hydrogen phthalate. The apparatus and experimental technique have been described previously. ${ }^{3}$ Measurements were made with solutions, stable for at least 24 hr ., containing known concentrations of oxalic acid, sodium hydroxide, and the metal chloride. To prevent precipitation, the metal chloride was added slowly only when the other ingredients had been made up nearly to the required volume. E.m.f. readings were constant to within $20 \mu \mathrm{v}$.

Results and Discussion

Since only the second thermodynamic dissociation constant of oxalic acid, $K_{2}=$ $a_{\mathrm{H}+}+a_{\mathrm{C}_{2} \mathrm{O}_{4}-}-/ a_{\mathrm{HC}_{2} \mathrm{O}_{4}-}$, had been determined accurately over a range of temperature, ${ }^{4}$ it was necessary to obtain the corresponding values of $K_{1}=a_{\mathrm{H}^{+}+a_{\mathrm{HC}_{2} \mathrm{O}_{4}}-} / a_{\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{O}_{4}}$. The first dissociation is rather extensive and measurements were made with a mixed acid cell

$$
\mathrm{H}_{2}-\mathrm{Pt}\left|\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\left(\mathrm{~m}_{1}\right), \mathrm{HCl}\left(\mathrm{~m}_{4}\right)\right| \mathrm{AgCl}-\mathrm{Ag}
$$

the e.m.f. of which is given by
or

$$
\begin{gathered}
E^{\prime}=E^{0}-k \log a_{\mathrm{H}}+a_{\mathrm{Cl}} \\
-\log \left[\mathrm{H}^{+}\right]=\left(E^{\prime}-E^{0}\right) / k+\log \mathrm{m}_{4}+\log \gamma_{\mathrm{H}^{+}}+\gamma_{\mathrm{Cl}}-
\end{gathered}
$$

where m represents molality, γ activity coefficient, and $k=2 \cdot 3026 \boldsymbol{R T} / \boldsymbol{F}$. By using expressions for total oxalate $\mathrm{m}_{1}=\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]+\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]+\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]$, electroneutrality

Table 1. Dissociation constant of oxalic acid.

$10^{3} \mathrm{~m}_{1}$	$10^{3} \mathrm{~m}_{4}$	$\left(E^{\prime}-E^{\circ}\right)$	$10^{3}\left[\mathrm{H}^{+}\right.$	$10^{3} \mathrm{I}$		$10^{5}\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]$	$10^{4} \mathrm{X}$	$10^{5} \mathrm{Y}$
2.9641	$2 \cdot 3993$	$0 \cdot 29430$	5-1574	5.196		$3 \cdot 842$	$2 \cdot 457$	1.454
3.8007	$2 \cdot 4028$	$0 \cdot 29102$	5.9097	$5 \cdot 953$		$4 \cdot 362$	$3 \cdot 048$	1.824
$3 \cdot 6686$	$4 \cdot 0032$	$0 \cdot 27279$	7.3331	$7 \cdot 368$		$3 \cdot 466$	$4 \cdot 309$	2.591
3.5414	4-1377	$0 \cdot 27192$	7.3375	$7 \cdot 371$		3-329	$4 \cdot 488$	$2 \cdot 572$
$7 \cdot 6610$	5-5797	0.25245	$12 \cdot 1490$	$12 \cdot 195$		$4 \cdot 553$	9.614	$5 \cdot 606$
$4 \cdot 7096$	$4 \cdot 2582$	$0 \cdot 26780$	$8 \cdot 4721$	$8 \cdot 511$		3-899	$5 \cdot 475$	$3 \cdot 249$
$4 \cdot 2650$	$4 \cdot 9781$	$0 \cdot 26295$	$8 \cdot 7793$	8.813		$3 \cdot 416$	5.808	3.433
$5 \cdot 0901$	$4 \cdot 2715$	0.26681	$8 \cdot 8099$	8.851		$4 \cdot 068$	$5 \cdot 806$	3-456
1.9442	$1 \cdot 5601$	0.31524	$3 \cdot 4178$	3-454		3.658	$1 \cdot 126$	$0 \cdot 727$
$\begin{aligned} & \text { Temp. } \\ & 10^{2} k_{1} \end{aligned}$		$\begin{gathered} 0^{\circ} \\ 5 \cdot 70 \end{gathered}$		$\begin{gathered} 15^{\circ} \\ 5 \cdot 60 \end{gathered}$	$\begin{gathered} 25^{\circ} \\ 5 \cdot 60 \end{gathered}$	35°	$\begin{aligned} & 45^{\circ} \\ & 5 \cdot 07 \end{aligned}$	
		$5 \cdot 18$						

$\left[\mathrm{H}^{+}\right]=\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]+2\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]+\mathrm{m}_{4}$, and ionic strength $I=\left[\mathrm{H}^{+}\right]+\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]$, a graphical solution similar to that described by Speakman ${ }^{5}$ was applied, leading to an equation
in which

$$
\begin{gathered}
Y=X K_{1}+K_{1} K_{2} \\
X=\frac{\left[\mathrm{H}^{+}\right] \gamma_{2}\left(\mathrm{~m}_{1}-\left[\mathrm{H}^{+}\right]-\mathrm{m}_{4}\right)}{2 \mathrm{~m}_{1}-\left[\mathrm{H}^{+}\right]+\mathrm{m}_{4}} \\
Y=\frac{\left(\left[\mathrm{H}^{+}\right]-\mathrm{m}_{4}\right)\left[\mathrm{H}^{+}\right]^{2} \gamma_{1}^{2} \gamma_{2}}{2 \mathrm{~m}_{1}-\left[\mathrm{H}^{+}\right]+\mathrm{m}_{4}}
\end{gathered}
$$

and

[^1]Activity coefficients were obtained from the Davies equation ${ }^{6}$

$$
\begin{equation*}
-\log \gamma_{z}=A z^{2}\left[I^{\frac{1}{2}} /\left(1+I^{\frac{1}{2}}\right)-0 \cdot 2 I\right] \tag{1}
\end{equation*}
$$

Fig. 1 shows the good linear relation between X and Y at each temperature. The results at 25° are detailed in Table 1, which includes only the K_{1} values at the other temperatures. At 25°, the value agrees very well with 5.36×10^{-2}, obtained from conductivity measurements. ${ }^{4}$

The concentration of hydrogen ions in the cell
is given by

$$
\mathrm{H}_{2}-\mathrm{Pt}\left|\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\left(\mathrm{~m}_{1}\right), \mathrm{NaOH}\left(\mathrm{~m}_{2}\right), \mathrm{MCl}_{2}\left(\mathrm{~m}_{3}\right)\right| \mathrm{AgCl}-\mathrm{Ag}
$$

$$
-\log \left[\mathrm{H}^{+}\right]=\left(E^{\prime}-E^{0}\right) / k+\log 2 \mathrm{~m}_{3}+\log \gamma_{\mathrm{H}^{+}} \gamma_{\mathrm{Cl}}
$$

The concentrations of ionic species were obtained from: $\mathrm{m}_{1}=\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]+\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]+$ $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]+\left[\mathrm{MC}_{2} \mathrm{O}_{4}\right], \quad \mathrm{m}_{3}=\left[\mathrm{M}^{2+}\right]+\left[\mathrm{MC}_{2} \mathrm{O}_{4}\right]$, the electroneutrality condition $\left[\mathrm{H}^{+}\right]+$ $2\left[\mathrm{M}^{2+}\right]+\mathrm{m}_{2}=\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]+2\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]+2 \mathrm{~m}_{3}$, and K_{1} and K_{2} for oxalic acid. Studies on the association between the nickel ion and the malonate and substituted malonate anions both at low concentration and a number of constant ionic strengths up to $I=0.2$ have

Fic. 1. Plots of X against Y. (The lines are displaced along the y-axis for clarity.)

Fig. 2. Plots of $\log K$ against $T^{-1} . \quad$ (Righthand ordinates refer to $\mathrm{CoC}_{2} \mathrm{O}_{4}$.)

shown that equation (l) represents the activity coefficients very satisfactorily. ${ }^{7}$ The same equation has been used in the present work. T.I.P. programmes were constructed for a high-speed DEUCE electronic computer leading to the calculation of thermodynamic association constants $K=\left\{\mathrm{MC}_{2} \mathrm{O}_{4}\right\} /\left\{\mathrm{M}^{2+}\right\}\left\{\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right\}$ by successive approximations of I. Three such approximations were usually carried through, giving $0 \cdot 1 \%$ reproducibility in I. Table 2 shows the good constancy of K at each temperature.

The K values at 25° may be compared with those obtained from conductivity measurements: ${ }^{8} K\left(\mathrm{NiC}_{2} \mathrm{O}_{4}\right)=2 \times 10^{5} ; K\left(\mathrm{CoC}_{2} \mathrm{O}_{4}\right)=5.1 \times 10^{4}$; and $K\left(\mathrm{MnC}_{2} \mathrm{O}_{4}\right)=8.1 \times 10^{3}$; and, from solubilities, $K\left(\mathrm{MnC}_{2} \mathrm{O}_{4}\right)=\mathbf{9} \cdot 1 \times 10^{3}$. Plots of $\log K$ against T^{-1} in Fig. 2 are curved, indicating a non-zero ΔC_{p}. This has often been observed in precise measurements on the dissociation of weak acids, but the present is one of the few cases in which detectable values of ΔC_{p} have been found for reactions involving metal-ion complexes. The variation of $\log K$ with temperature may be expressed by the equation $\log K=a+b T+c T^{2}$, in which the values of the three parameters are as in Table 3. The calculated K values have a maximum difference of 3% from the observed values.

[^2]Table 2. E.M.F. measurements.

Temp. $=15^{\circ}$							$10^{-4} \mathrm{~K}$
1	0.33477	2.435	10.8014	$5 \cdot 8534$	$3 \cdot 946$	4-2483	$5 \cdot 62$
2	$0 \cdot 35283$	1.848	6.4859	3-6266	3.966	3-4573	$5 \cdot 64$
3	$0 \cdot 34364$	2.003	$10 \cdot 0386$	6.0320	$4 \cdot 293$	$3 \cdot 3708$	$5 \cdot 84$
4	$0 \cdot 35568$	1.719	5.5921	$1 \cdot 6593$	2.091	$2 \cdot 7479$	6.03
5	$0 \cdot 35092$	$2 \cdot 119$	5.3482	1-1892	1.597	$3 \cdot 0465$	6.37
7	0.35302	2.075	$4 \cdot 9883$	1-1107	1.596	$3 \cdot 0539$	6.54
8	$0 \cdot 34995$	2.250	$5 \cdot 2243$	0.9722	1.344	$2 \cdot 9756$	6.61
9	$0 \cdot 34660$	2.572	$5 \cdot 2674$	$1 \cdot 0370$	1.442	$3 \cdot 2811$	$5 \cdot 99$
					Mean $K=6.08 \pm 0.32$		
Temp. $=25^{\circ}$							
1	$0 \cdot 34646$	2.425	10.7932	$5 \cdot 8618$	$3 \cdot 659$	4-2687	$6 \cdot 18$
2	$0 \cdot 36519$	1.841	6.4688	$3 \cdot 6436$	$3 \cdot 695$	3-4674	$6 \cdot 13$
3	$0 \cdot 35571$	1.999	$10 \cdot 0025$	6.0680	$4 \cdot 010$	3.3630	6.25
4	$0 \cdot 36843$	1.733	$5 \cdot 5157$	1.7348	2.051	$2 \cdot 6759$	$5 \cdot 89$
5	$0 \cdot 36331$	$2 \cdot 122$	5-3168	$1 \cdot 2202$	1.526	3.0224	$6 \cdot 62$
7	$0 \cdot 36580$	2.095	$4 \cdot 8970$	1.2010	$1 \cdot 628$	2.9599	$6 \cdot 14$
8	$0 \cdot 36267$	2.273	5-1204	1.0747	1.405	$2 \cdot 8663$	6.02
					Mean $K=6.18 \pm 0.15$		
Temp. $=35^{\circ}$							
1	$0 \cdot 35842$	2.434	10.6757	$5 \cdot 9676$	$3 \cdot 339$	4-1892	6.52
2	$0 \cdot 37786$	1.847	6.3769	3-7309	$3 \cdot 400$	$3 \cdot 4072$	$6 \cdot 43$
3	0.36801	2.007	$9 \cdot 8810$	6.1784	$3 \cdot 663$	$3 \cdot 2818$	$6 \cdot 47$
4	$0 \cdot 38115$	1.740	5-4489	$1 \cdot 7992$	1.909	$2 \cdot 6246$	$6 \cdot 16$
5	$0 \cdot 37596$	$2 \cdot 136$	$5 \cdot 2338$	$1 \cdot 3010$	$1 \cdot 465$	2.9466	$6 \cdot 67$
7	$0 \cdot 37842$	$2 \cdot 102$	$4 \cdot 8415$	$1 \cdot 2548$	1.525	2.9156	$6 \cdot 44$
8	$0 \cdot 37509$	$2 \cdot 277$	$5 \cdot 0795$	$1 \cdot 1142$	1.301	$2 \cdot 8365$	$6 \cdot 45$
9	$0 \cdot 37125$	$2 \cdot 586$	$5 \cdot 1728$	1-1294	1.312	$3 \cdot 2005$	6.44
					Mean $K=6.45 \pm 0.08$		
Temp. $=45^{\circ}$							
1	$0 \cdot 37024$	2.432	$10 \cdot 6254$	6.0146	3.041	4-1702	$7 \cdot 14$
2	$0 \cdot 39050$	1.852	6.3028	$3 \cdot 8033$	3.155	$3 \cdot 3585$	6.74
3	0.38028	2.015	9.7853	6.2705	3-377	$3 \cdot 2164$	6.72
4	0.39386	1.746	5-3926	1.8543	1.788	2.5810	$6 \cdot 43$
5	0.38838	$2 \cdot 138$	5-2032	1.3309	$1 \cdot 356$	2.9272	$7 \cdot 18$
7	$0 \cdot 39117$	$2 \cdot 113$	4.7706	$1 \cdot 3246$	$1 \cdot 470$	$2 \cdot 8507$	$6 \cdot 49$
8	$0 \cdot 38762$	$2 \cdot 285$	$5 \cdot 0261$	1-1666	1.239	$2 \cdot 7898$	$6 \cdot 65$
9	$0 \cdot 38352$	2.588	5•1428	1-1588	1.219	3-1801	6.93
					Mean $K=6.79 \pm 0.23$		
Manganese oxalate							
Expt.	1	2	3	4	5	6	7
$10^{3} \mathrm{~m}_{1} \ldots$	3.4320	$4 \cdot 7888$	3.0967	$2 \cdot 6820$	6.0543	$3 \cdot 8573$	$4 \cdot 5292$
$10^{3} \mathrm{~m}_{2} \ldots$	3.2776	4-4524	$2 \cdot 8542$	2.7137	3.1920	5-3869	6.1270
$10^{3} \mathrm{~m}_{3} \ldots$	$9 \cdot 3107$	10.5926	$8 \cdot 9826$	$7 \cdot 7665$	$\mathbf{9 . 0 4 9 4}$	$8 \cdot 6069$	$8 \cdot 6630$
Expt.	$\left(E^{\prime}-E^{\circ}\right)$	$10^{2} I$	$\begin{aligned} & 10^{3}\left[\mathrm{H}^{+}\right] \\ & \text {Tem } \end{aligned}$	$\begin{aligned} & 10^{3}\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right] \\ & =0^{\circ} \end{aligned}$	$10^{5}\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]$	$10^{3}\left[\mathrm{MC}_{2} \mathrm{O}_{4}\right]$	$10^{-3} \mathrm{~K}$
1	$0 \cdot 24805$	$2 \cdot 805$	1.9402	1.5637	$9 \cdot 437$	1.7327	8.37
2	$0 \cdot 23893$	$3 \cdot 233$	2.5586	$2 \cdot 4025$	11.402	$2 \cdot 1902$	$8 \cdot 50$
3	$0 \cdot 24977$	2.705	1.8609	$1-4069$	8.773	1.5663	$8 \cdot 17$
4	0.25855	2.329	1.4553	1-1485	8.830	1.4220	8.01
5	$0 \cdot 22908$	2.962	$4 \cdot 5000$	3.9386	10.391	$1 \cdot 7728$	8.33
					Mean $K=8.28 \pm 0.15$		
Temp. $=15^{\circ}$							
1	$0 \cdot 26232$	2.811	1.9043	1.5999	9-320	1.6979	8.53
2	$0 \cdot 25270$	3.241	$2 \cdot 5125$	$2 \cdot 4497$	11.229	$2 \cdot 1453$	8.69
3	$0 \cdot 26410$	$2 \cdot 711$	1.8288	1.4391	$8 \cdot 649$	1.5354	$8 \cdot 34$
4	$0 \cdot 27318$	2.331	1.4400	1-1639	8.556	$1 \cdot 4094$	$8 \cdot 41$
5	0.24208	2.970	4.4585	3.9828	10.052	$1 \cdot 7333$	$8 \cdot 64$
6	$0 \cdot 28139$	2.530	0.9430	1-3499	$15 \cdot 461$	$2 \cdot 3354$	$8 \cdot 13$
7	$0 \cdot 27745$	2.574	1-1004	$1 \cdot 7775$	17.523	$2 \cdot 5497$	$8 \cdot 11$
Mean $K=8.41 \pm 0.18$							

Temp. $=25^{\circ}$							
1	$0 \cdot 27154$	2.808	1.9060	1.5986	8.672	1.7058	0.941
2	$0 \cdot 26152$	$3 \cdot 237$	2.5218	$2 \cdot 4413$	10.396	$2 \cdot 1625$	0.969
3	$0 \cdot 27321$	$2 \cdot 706$	1.8423	$1 \cdot 4261$	7.927	$1 \cdot 5559$	0.943
4	$0 \cdot 28282$	$2 \cdot 329$	$1 \cdot 4384$	1-1658	7.991	$1 \cdot 4133$	0.921
5	$0 \cdot 25066$	2.969	$4 \cdot 4532$	$3 \cdot 9904$	$9 \cdot 402$	$1 \cdot 7334$	0.944
6	$0 \cdot 29138$	2.527	0.9396	$1 \cdot 3536$	14.500	$2 \cdot 3415$	0.889
7	$0 \cdot 28727$	2.570	1.0978	1.7805	16.390	$2 \cdot 5583$	0.889
Temp. $=3.5{ }^{\circ}$							
1	$0 \cdot 28101$	2.808	1.8905	1 -6105	7.864	1.7002	1.06
2	$0 \cdot 27065$	$3 \cdot 236$	$2 \cdot 5025$	$2 \cdot 4539$	$9 \cdot 407$	$2 \cdot 1565$	1.09
3	$0 \cdot 28270$	2.705	1.8296	$1 \cdot 4357$	$7 \cdot 172$	1.5524	1.06
4	$0 \cdot 29271$	$2 \cdot 329$	$1 \cdot 4240$	1-1781	$7 \cdot 276$	1.4071	1.03
5	$0 \cdot 25940$	2.968	4.4221	$4 \cdot 0024$	$8 \cdot 481$	1.7210	1.06
6	$0 \cdot 30162$	2.524	0.9280	1-3638	$13 \cdot 192$	$2 \cdot 3436$	1.00
7	$0 \cdot 29735$	$2 \cdot 566$	1.0852	$1 \cdot 7910$	14.879	$2 \cdot 5618$	1.00
Temp. $=45^{\circ} \quad$ Mean $K=1.04 \pm 0.03$							
1	$0 \cdot 29055$	$2 \cdot 809$	1.8735	$1 \cdot 6268$	7.271	1-6894	$1 \cdot 16$
2	$0 \cdot 27986$	$3 \cdot 237$	$2 \cdot 4803$	$2 \cdot 4749$	$8 \cdot 690$	$2 \cdot 1420$	1.20
3	$0 \cdot 29222$	$2 \cdot 705$	1.8179	$1 \cdot 4468$	6.596	$1 \cdot 5467$	$1 \cdot 18$
4	$0 \cdot 30261$	$2 \cdot 329$	1.4112	$1 \cdot 1905$	6.723	$1 \cdot 4000$	$1 \cdot 13$
5	$0 \cdot 26817$	2.971	$4 \cdot 3939$	$4 \cdot 0271$	7.793	1.7015	$1 \cdot 17$
6	$0 \cdot 31194$	2.522	0.9157	1.3760	12-226	$2 \cdot 3410$	$1 \cdot 10$
7	$0 \cdot 30741$	2.564	1.0736	1.8024	13.719	$2 \cdot 5619$	$1 \cdot 11$
Mean $K=1 \cdot 15 \pm 0.03$							

$\Delta H, \Delta C_{\mathrm{p}}$, and ΔS calculated from the equations $\Delta H=2 \cdot 303 \boldsymbol{R} T^{2}(b+2 c T), \Delta C_{\mathrm{p}}=$ $4 \cdot 606 \boldsymbol{R} T(b+3 c T)$, and $\Delta S=(\Delta H-\Delta G) / T$, are given in Table 4. The mean deviations have been estimated by using different combinations of experimental points at three temperatures for the calculation of a, b, and c.

The values of ΔC_{p} may be compared with 35-45 cal. deg. ${ }^{-1}$ for a number of reactions in which hydrogen ion associates with an anion. ${ }^{9} \quad \Delta C_{p}\left(\mathrm{CoC}_{2} \mathrm{O}_{4}\right)$ appears to be rather low, but the larger values for $\mathrm{NiC}_{2} \mathrm{O}_{4}$ and $\mathrm{MnC}_{2} \mathrm{O}_{4}$ reflect the trend with charge type observed in proton-transfer reactions. A ΔC_{p} of 70 cal . deg. ${ }^{-1}$ has been found for the association of tervalent chromium with thiocyanate ion. ${ }^{10}$

The entropy of association may be written:

$$
\begin{equation*}
\Delta S=\Delta S_{\mathrm{g}}+\Delta S_{\mathrm{hyd}}\left(\mathrm{MC}_{2} \mathrm{O}_{4}\right)-\Delta S_{\mathrm{hyd}}\left(\mathrm{M}^{2+}\right)-\Delta S_{\mathrm{hyd}}\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right) \tag{2}
\end{equation*}
$$

where ΔS_{g} and ΔS_{hyd} are respectively gaseous and hydration entropies. ΔS_{g} has been calculated as described previously, ${ }^{\mathbf{1 1}}$ by using a non-planar model for the complex species with the $\mathrm{M}-\mathrm{O}$ and oxalate planes at an angle of $101^{\circ} . \Delta S_{\mathrm{hyd}}\left(\mathrm{MC}_{2} \mathrm{O}_{4}\right)$ obtained from

Table 3. Parameters for temperature-dependence of $\log K$.

	a	$-10^{2} b$	$10^{5} \mathrm{c}$
$\mathrm{NiC}_{2} \mathrm{O}_{4}$	9.065	2.655	$4 \cdot 512$
$\mathrm{CoC}_{2} \mathrm{O}_{4}$	6.810	1.500	$2 \cdot 760$
$\mathrm{MnC}_{2} \mathrm{O}_{4}$	$8 \cdot 141$	$3 \cdot 146$	5.857

The calculated K values have a maximum difference of 3% from the observed values.
equation (2) is given in Table 5. The values are lower than the $63-71 \mathrm{cal} . \mathrm{deg} .^{-1} \mathrm{~mole}^{-1}$ observed for the corresponding sulphate ion pairs; this may be due to a greater neutralisation of charge accompanying the formation of oxalate complexes. The change in $\Delta S_{\text {hyd }}\left(\mathrm{MC}_{2} \mathrm{O}_{4}\right)$ is small but, as far as differences are significant, it varies in the expected

[^3]direction with the reciprocal of the cationic radius. The entropy of association increases with temperature and the values at 0° and 45° are respectively; $\mathrm{NiC}_{2} \mathrm{O}_{4}, 21.0$ and 28.2 ; $\mathrm{CoC}_{2} \mathrm{O}_{4}, 22.0$ and $25.8 ; \mathrm{MnC}_{2} \mathrm{O}_{4}, 18 \cdot 6$ and 27.0 cal . deg. ${ }^{-1} \mathrm{~mole}^{-1}$. This increase reflects the greater freedom of the "frozen" solvent molecules when released from the fields of the ions at the higher temperatures.

Reaction	Table 4. Thermodynamic properties			
	$\begin{gathered} \Delta H \\ \text { (kcal. mole } \end{gathered}$	$\begin{gathered} \Delta G_{298} \\ \text { (kcal. } \mathrm{mole}^{-1} \text {) } \end{gathered}$	$\underset{\text { (cal. deg. }{ }^{-1} \text { mole }^{-1} \text {) }}{ }$	$\begin{gathered} \Delta C_{\mathrm{p}} \\ \text { (cal. } \operatorname{deg} .^{-1} \text {) } \end{gathered}$
$\mathrm{Ni}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	0.15 ± 0.10	-7.05 ± 0.02	$24.2 \pm 0 \cdot 4$	35 ± 12
$\mathrm{Co}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	0.59 ± 0.07	-6.54 ± 0.02	23.9 ± 0.3	20 ± 10
$\mathrm{Mn}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{\text {- }}$	1.42 ± 0.20	-5.41 ± 0.02	22.9 ± 0.7	65 ± 15

Table 5. Thermodynamic properties

Ion pair	$\begin{gathered} S_{\mathrm{g}}\left(\mathrm{MC}_{2} \mathrm{O}_{4}\right) \\ \text { (cal. deg. }{ }^{-1} \mathrm{~mole}^{-1} \text {) } \end{gathered}$	$\underset{\text { (cal. deg. }{ }^{-1} \text { mole }^{-1} \text {) }}{\Delta S}$	$\begin{gathered} S^{\circ}\left(\mathrm{MC}_{2} \mathrm{O}_{4}\right) \\ \text { (cal. deg. }{ }^{-1} \mathrm{~mole}^{-1} \text {) } \end{gathered}$	$\underset{\text { (cal. deg. } \left..^{-1} \text { mole }^{-1}\right)}{-\Delta S_{\mathrm{hyd}}\left(\mathrm{MC}_{2} \mathrm{O}_{4}\right)}$	$\stackrel{r_{+}^{+1}}{\left(\AA^{+1}\right.}$
$\mathrm{NiC}_{2} \mathrm{O}_{4}$.	$70 \cdot 0$	$24 \cdot 7$	13.9	$56 \cdot 1$	$1 \cdot 37$
$\mathrm{CoC}_{2} \mathrm{O}_{4}$	$70 \cdot 0$	$23 \cdot 9$	$14 \cdot 1$	$55 \cdot 8$	1.35
$\mathrm{MnC}_{2} \mathrm{O}_{4}$	$69 \cdot 9$	$22 \cdot 9$	$15 \cdot 1$	$54 \cdot 8$	1.28

The heat changes, ΔH, oppose the association reactions and it is these terms which account for the considerable differences of stability over the series of cations. This is to be expected for transition-metal ion complexes, and it has also been claimed that equations of the form

$$
\Delta H=A z / r_{+}+B I_{02}-C / r_{+}^{3}
$$

may be used to represent the data. ${ }^{12}$ The ΔH values of Table 4 follow the reverse of this order, decreasing with increasing $r_{+}{ }^{\mathbf{1}}$ and ionization potential I_{02}. When ΔH is expressed by an equation analogous to (2), and all other terms are assumed to be approximately constant, ΔH should increase with $-\Delta H_{\text {hyd }}\left(\mathrm{M}^{2+}\right)$; the opposite order is observed: more results are required to explain this.

We thank Dr. H. S. Dunsmore for advice on computer programmes, and the D.S.I.R. for a grant to A. McA.

The University, Glasgow, W.2.
[Received, November 7th, 1960.]
12 Williams, J. Phys. Chem., 1954, 58, 121.

[^0]: ${ }^{1}$ Part VI, Nair and Nancollas, $J ., 1959,3934$.
 ${ }^{2}$ McAuley and Nancollas, Trans. Faraday Soc., 1960, 56, 1165.

[^1]: 3 Nair and Nancollas, $J ., 1958,4144$.
 ${ }^{4}$ Robinson and Stokes, "Electrolyte Solutions," Butterworths, London, 1955.
 ${ }^{5}$ Speakman, $J ., 1940,856$.

[^2]: - Davies, J., 1938, 2093.
 ${ }^{7}$ Brannan and Nancollas, unpublished work.
 ${ }^{8}$ Davies, Discuss. Faraday Soc., 1957, 24, 83; J., 1938, 2098.

[^3]: ${ }^{9}$ Pitzer, J. Amer. Chem. Soc., 1937, 59, 2365.
 10 Postmus and King, J. Phys. Chem., 1955, 59, 1208.
 ${ }^{11}$ Nair and Nancollas, J., 1958, 3706.

